Хрусталик — анатомическое строение, функции, патологии

Хрусталик – это элемент системы глаза, который непосредственно участвует в работе органа зрения. Он отличается несложным строением, но функциональной важностью. Чтобы сохранить острое зрение на долгие годы, следует владеть основной информацией о хрусталике, именно об этом и пойдет речь в статье:
- Строение хрусталика.
- Функции.
- Признаки нарушения работы.
- Возможные болезни.
- Как осуществляется замена хрусталика.
Строение хрусталика
Простое строение хрусталика наделяет его важными функциями.
Рассматриваемый элемент глаза – это двояковыпуклая линза, которая дает возможность быстро менять фокус с предмета близко расположенного на дальний. Хрусталик преломляет свет, диоптрическая сила его равна 18-20. Вся окружность хрусталика покрыта связками (напоминают ниточки с узелками), которые соединены с глазными мышцами. Сокращаясь, они меняют кривизну линзы – это и позволяет хорошо видеть вдаль и вблизи.
Если рассматривать анатомическое строение хрусталика, то стоит выделить следующие его составляющие:
- капсульный мешок (оболочка);
- ядро с высокой плотностью;
- хрусталиковые массы с низкой плотностью.
Как только у ядра повышается плотность, человек начинает хуже видеть вблизи – так развивается возрастная дальнозоркость.
Функциональные возможности
Хрусталику принадлежит важная роль в организации работы органа зрения. Он выполняет следующие функции:
- Проводит лучи света к сетчатке благодаря своей прозрачности.
- Преломляет световые лучи, что обеспечивает их точную фокусировку на сетчатку глаза.
- Обладает способностью менять свою кривизну, тем самым обеспечивая отличное восприятие изображений/предметов, находящихся на разной удаленности.
- Является разграничением заднего и переднего отдела глазного яблока, что предотвращает обширное/стремительное распространение любого патологического процесса.
Признаки дисфункциональности хрусталика
Помутнение хрусталика приводит к полной потере зрения.
Если произошло патологическое поражение хрусталика, то у больного будут присутствовать следующие симптомы:
- Появляющиеся усталость, жжение в глазах при чтении.
- При взгляде на яркий свет в глазах начинают появляться круги.
- Все видится «размыто» или мутно.
- Проблемы с восприятием и распознаванием цветов (белый может казаться желтым).
- При внимательном рассмотрении предметов появляются черные точки или небольшие пятна.
- Частичная потеря зрения.
При наличии хотя бы одного из перечисленных симптомов следует обратиться за квалифицированной медицинской помощью. Офтальмолог проведет необходимые обследования, уточнит диагноз и назначит лечение.
Возможные заболевания
Вышеуказанные симптомы могут свидетельствовать о развитии следующих заболеваний:
- макрофакия – размеры хрусталика сильно увеличены;
- микрофакия – уменьшенные размеры рассматриваемого элемента;
- патологическое изменение поверхности линзы, проявляющееся конусообразным или сферическим выпячиванием;
- осложнения после травмы глаза;
- катаракта.
Кроме этого, хрусталик может полностью отсутствовать (афакия) или не иметь какой-то части ткани – это врожденные патологии. Все приобретенные заболевания связаны с нарушением прозрачности рассматриваемого элемента органа зрения.
Лечение перечисленных патологий может быть терапевтическим или хирургическим. Приобретенные заболевания, если они были диагностированы своевременно, чаще всего удается остановить в развитии. Более эффективным считается хирургическое.
Замена хрусталика
Грамотное лечение сохраняет остроту зрения.
Операция по замене проблемного элемента органа зрения проводится в течение 15 минут и под местной анестезией. Никакого длительного восстановительного периода после такого хирургического вмешательства не требуется – пациент после процедуры еще сутки находится в стационаре под наблюдением врачей, затем отпускается домой. Причем, в течение 2 недель запрещено лишь поднимать тяжести (не более 2 кг), а смотреть телевизор, работать за компьютером и читать разрешается сразу после выписки.
Непосредственно процедура по замене проблемного хрусталика на искусственный проводится в следующей последовательности:
- В глаз больного вводятся капли с обезболивающим эффектом – местная анестезия.
- Офтальмолог специальным расширителем фиксирует глаз в открытом состоянии.
- Врач делает разрез на роговице, через который удаляет мутную линзу и устанавливает искусственную/прозрачную.
Эта процедура требует определенного опыта от хирурга-офтальмолога, но является безопасной – соприкосновение линзы с другими частями глаза исключено.
Хрусталик – часть глаза, состоит из эпителиальных клеток и не пронизана кровеносными сосудами. В течение жизни человека он претерпевает изменения в форме, размерах и уровне прозрачности. Появление первых признаков подобных изменений – повод к немедленному обращению за квалифицированной медицинской помощью, что поможет избежать полной потери зрения.
Источник: http://hochuvidet.ru/hrustalik-glaza-chto-iz-sebya-predstavlyaet-kakie-funktsii-vypolnyaet/
Анатомия и физиология хрусталика
Содержание:
Хрусталик — это прозрачная двояковыпуклая биологическая линза диаметром около 9-10 мм, которая располагается в переднем отделе глаза между радужкой и СТ, находясь в углублении последнего.
Передняя поверхность хрусталика имеет форму шара с радиусом кривизны около 11 мм. Задняя поверхность напоминает параболоид с кривизной вершины, равной 6 мм. Передняя поверхность граничит с передней камерой глаза посредством зрачка, а по периферии с задней поверхностью радужки.
Центр передней поверхности хрусталика называется передним полюсом, который располагается на расстоянии примерно 3 мм кзади от задней поверхности ротной оболочки. Экватор хрусталика лежит в пределах ресничных отроет ков на расстоянии 0,5 мм от них.
Экваториальная поверхность имеет многочисленные складки, образование которых связано с тем, что к этой области прикрепляется ресничный поясок.
Сагиттальный размер (толщина) хрусталика в зрелые гиды составляет примерно 3,6 мм.
Масса хрусталика к 20-30-летнему возрасту приближается к 200 мг, а в старческие годы увеличивается до 250 мг. С возрастом плотность вещества хрусталика возрастает В правильном положении хрусталик удерживают многочиcленные волокна, формирующие подвешивающую связку хрусталика.
Волокна тянутся к хрусталику от плоской части ресничного тела, начинаясь от зубчатого края сетчатки и его отростков. Подходя к хрусталику и частично перекрещиваясь, нити прикрепляются к его капсуле в области экватора, а также на расстоянии до 2 мм кпереди и 1 мм кзади от него.
Волокна ресничного пояска, вплетаясь в капсулу хрусталика, специальными веществами цементируются с ней и участвуют в образовании зонулярной (перикапсулярной) пластинки капсулы. Места прикрепления ресничного пояска к капсуле называются пластинами Бергера.
Экватор хрусталика вместе с передними и задними волокнами ресничного пояска ограничивает пространство треугольной формы (канал Ганновера, или Петитов канал), ное пространство ограничивается циркулярной гиалоидо-капсулярной связкой (связка Вигера), фиксирующей хрусталик к СТ. Связка обеспечивает правильное положение хрусталика.
При нарушении анатомо-топографических соотношений структур связочного аппарата хрусталика возникает его смещение эктопия.
При рождении в норме хрусталик прозрачен. С возрастом по мере его роста ядро приобретает желтоватый оттенок, что, вероятно, связано с влиянием на него ультрафиолетового излучения.
Структурные элементы хрусталика — капсула, эпителий, волокна. Всё вещество хрусталика заключено в капсулу (сумку) — тонкую, бесструктурную, сильно преломляющую лучи света, высокоэластичную и довольно плотную базальную мембрану. Спереди капсула толще (до 15,5 мкм), чем сзади. С возрастом толщина капсулы увеличивается, особенно спереди.
Под передней капсулой располагается один слой эпителиальных клеток, распространяющихся на экватор хрусталика. Клетки приэкваториальной зоны по мере деления мигрируют кзади и и последующем превращаются в хрусталиковые волокна.
Переход от эпителиальных клеток к хрусталиковому волокну сопровождается удлинением базальной и апикальной их частей. Хрусталиковые волокна имеют веретенообразную или ремнеподобную форму, располагаясь по дуге в виде концентрических слоев.
В задних частях хрусталика волокна более тонкие, что обусловлено асимметричной формой хрусталика и большей толщиной передней коры. Концы волокон встречаются в определённом месте и формируют швы.
Высокую рефракционную способность (19 диоптрий) обеспечивает высокая концентрация белковых филаментов, а прозрачность обусловлена их строгой организацией, однородностью структуры волокон в пределах каждого поколения (отсутствие в них ядер, небольшое количество внутрицитоплазматических органоидов и небольшой объём межклеточного пространства — около 1% объёма хрусталика). Одним из факторов, влияющих на рефракционную способность хрусталика, служит повышение концентрации белка по мере приближения к ядру хрусталика, благодаря чему отсутствует хроматическая аберрация.
Сохранение прозрачности хрусталика возможно лишь при незначительных точечных разрушениях капсулы. В этих случаях дефект закрывают эпителиальные клетки, что предотвращает дальнейшие деструктивные изменения волокон.
При обширных повреждениях наступают необратимые нарушения взаимоотношений волокон с влагой передней камеры, наступает их отёк, деструкция, нарушение прозрачности и развивается помутнение хрусталика (катаракта).
Хрусталик обладает определёнными функциями: функцией светопроведения и светопреломления, разделительной между передним и задним отделом глазного яблока и функцией защитного барьера.
Взаимодействуя с цилиарным телом, хрусталик обеспечивает функцию аккомодации — приспособительной функции глаза, обеспечивающей возможность чёткого различения предметов, расположенных на разных расстояниях от него.
По теории Гельмгольца, к механизме аккомодации предусмотрено взаимодействие таких анатомических структур, как цилиарное тело, циннова связка и хрусталик.
При этом при зрении вдаль цилиарная мышца расслабляется, а циннова связка, соединяющая внутреннюю поверхность цилиарного тела и экваториальную зону хрусталика, находится в натянутом состоянии и. таким образом, не даёт хрусталику возможности принять более выпуклую форму, обеспечивая чёткость изображения предметов на сетчатке. В процессе аккомодации происходит сокращение циркулярных волокон цилиарной мышцы, круг суживается, в результате чего циннова связка расслабляется, а хрусталик, благодаря своей эластичности, принимает более выпуклую форму. При этом увеличивается преломляющая способность хрусталика, что обеспечивает возможность чёткой.
Большая часть поверхности хрусталика соприкасается со СТ, отделяясь от него узкой капиллярной щелью, которая называется захpyсталиковым пространством.
По наружному краю указанфокусировки на сетчатке изображений предметов, расположенных на близком расстоянии от глаза.
Таким образом, аккомодация — это динамическая рефракция глаза, обеспеченная хрусталиком, цилиарным телом и цинковой связкой.
—
Статья из книги: Офтальмология. Национальное руководство | Аветисов С.Э.
Источник: https://zreni.ru/articles/aboutvision/1427-anatomiya-i-fiziologiya-hrustalika
Анатомия хрусталика
В глазу хрусталик находится сразу же за радужкой в углублении (fossa patellaris) на передней поверхности стекловидного тела. В этом положении он удерживается многочисленными волокнами, образующими в сумме подвешивающую связку — ресничный поясок. Эти волокна тянутся к экватору хрусталика от плоской части ресничного тела и его отростков. Частично перекрещиваясь они вплетаются в капсулу хрусталика на 2 мм кпереди и на 1 мм кзади от экватора, образуя петитов канал и зонулярную пластинку.
Задняя поверхность хрусталика так же, как и передняя, омывается водянистой влагой, так как почти на всем протяжении отделяется от стекловидного тела узкой щелью (ретролентальное пространство).
По наружному краю это пространство ограничивается кольцевидной связкой Вигера, фиксирующей хрусталик к стекловидному телу. Поэтому хирург должен помнить, что неосторожные тракции во время экстракции катаракты могут быть причиной повреждения передней гиалоидной мембраны стекловидного тела и даже отслойки сетчатки.
Повреждение хрусталика наблюдается как при контузии глаза, его проникающем ранении, так и во время внутриглазных хирургических вмешательств (чаще при антиглаукоматозной операции).
Читайте также: Блефароконъюнктивит - что это, причины и лечение
Сохранение прозрачности хрусталика возможно лишь при незначительных точечных разрушениях капсулы. В таких случаях образовавшийся дефект закрывается эпителиальными клетками и дальнейших деструктивных изменений волокон не наблюдается.
При более обширных повреждениях развивается катаракта.
Поскольку капсула не восстанавливается, наступает необратимое нарушение взаимоотношения волокон с влагой передней камеры. Причиной этого является отек волокон, их деструкция и, естественно, нарушение прозрачности.
Процесс неуклонно прогрессирует. Усиливается дегенерация эпителия хрусталика и расширяется зона деструкции волокон.
В ряде случаев отмечается реактивная пролиферация эпителиоцитов, приводящая к образованию так называемой вторичной катаракты.
Таким образом, можно считать, что использование понятия «регенерация» по отношению к хрусталику неправомерно.
Строение
Хрусталик имеет вид прозрачной эластичной двояковыпуклой линзы, циркулярно фиксированной к цилиарному телу, диаметром 9-10 мм, максимальная толщина хрусталика взрослого человека примерно 3,5-5 мм (в зависимости от напряжения аккомодации), своей передней, менее выпуклой поверхностью прилегает к радужке, задней, более выпуклой, — к стекловидному телу. Центральные точки передней и задней поверхностей соответственно называются передний и задний полюсы. Периферический край, где обе поверхности переходят друг в друга, называется экватором. Оба полюса соединены осью хрусталика.
Размеры и оптические свойства
Радиус кривизны передней поверхности хрусталика в покое аккомодации равен 10 мм, а задней — 6 мм, при максимальном напряжении аккомодации передний и задний радиус сравниваются, уменьшаясь до 5,33 мм.
Показатель преломления хрусталика неоднороден по толщине и в среднем составляет 1,414 или 1,424 также в зависимости от состояния аккомодации.
В покое аккомодации преломляющая сила хрусталика составляет среднем 19,11 диоптрий, при максимальном напряжении аккомодации — 33,06 дптр.
У новорождённых хрусталик почти шаровидный, имеет мягкую консистенцию и преломляющую силу до 35,0 дптр. Дальнейший рост его происходит, в основном, за счет увеличения диаметра.
Хрусталик заключен в тонкую капсулу, передняя часть которой выстлана однослойным кубическим эпителием. Задний отдел капсулы тоньше переднего.
Удерживается хрусталик в своем положении зонулярной связкой, которая состоит из множества гладких и прочных мышечных волокон, идущих от капсулы хрусталика к ресничному телу, где эти волокна залегают между ресничными отростками.
Между волокнами связки находятся наполненные жидкостью пространства, сообщающиеся с камерами глаза.
Вещество хрусталика состоит из более плотного ядра, расположенного в центральной части, которое без резкой границы продолжается в более мягкую часть — кору.
Состав хрусталика:
- вода — 65%,
- белки — 30%,
- неорганические соединения (калий, кальций, фосфор),
- витамины,
- ферменты,
- липиды.
Хрусталик у молодых людей содержит большей частью растворимые белки, в окислительно-восстановительных процессах которых участвует цистеин. Нерастворимые белки — альбуминоиды не содержат цистеина, в их состав входят нерастворимые аминокислоты (лейцин, глицин, тирозин и цистин).
Гистологическое строение
Снаружи хрусталик покрыт тонкой эластичной бесструктурной капсулой, которая представляет собой однородную прозрачную оболочку, сильно преломляющую свет и защищающую хрусталик от воздействия различных патологических факторов. Капсула при помощи ресничного пояска прикрепляется к ресничному телу.
Толщина капсулы хрусталика по всей его поверхности неодинакова: спереди часть капсулы толще, чем сзади (соответственно 0,008—0,02 и 0,002—0,004 мм), это обусловлено тем, что на передней поверхности под капсулой располагается одиночный слой эпителиальных клеток.
Наибольшей толщины капсула достигает в двух концентричных экватору ее поясах — переднем (находится в 1 мм кнутри от места прикрепления передних волокон ресничного пояска) и заднем (кнутри от места заднего прикрепления ресничного пояска). Наименьшая толщина капсулы в области заднего полюса хрусталика.
Эпителий хрусталика — слой кубических клеток; главными его функциями являются трофическая, камбиальная и барьерная.
Эпителиальные клетки, соответствующие центральной зоне капсулы (напротив зрачка), уплощены и плотно прилегают друг к другу. Здесь практически не происходит деление клеток.
По мере продвижения от центра к периферии наблюдается уменьшение размера эпителиальных клеток, усиление их митотической активности, а также относительное увеличение высоты клеток так, что в области экватора эпителий хрусталика практически превращается в призматический, образуя ростковую зону хрусталика. Здесь происходит образование так называемых волокон хрусталика.
Основная масса хрусталика образована волокнами, которые представляют собой клетки эпителия, вытянутые в длину. Каждое волокно представляет собой прозрачную шестиугольную призму.
Вещество хрусталика, образованное белком кристаллином, совершенно прозрачно и так же, как другие компоненты светопреломляющего аппарата лишено сосудов и нервов.
Центральная, более плотная часть хрусталика, утратила ядро, укоротилась, и при наложении на другое волокно стала называться ядром, в то время, как периферическая часть образует менее плотную кору.
В процессе внутриутробного развития хрусталик получает питание от стекловидной артерии. Во взрослом состоянии питание хрусталика всецело зависит от стекловидного тела и водянистой влаги.
Функции
- Светопроведение: Прозрачность хрусталика обеспечивает прохождение света к сетчатке.
- Светопреломление: Являясь биологической линзой, хрусталик является второй (после роговицы) светопреломляющей средой глаза (в покое преломляющая сила составляет около 19 диоптрий).
-
Аккомодация: Способность изменять свою форму позволяет менять хрусталику свою преломляющую силу (от 19 до 33 диоптрий), что обеспечивает фокусировку зрения на различно удаленных предметах. При сокращении волокон ресничной мышцы, иннервируемых глазодвигательным и симпатическим нервами, происходит расслабление зонулярных волокон.
При этом уменьшается натяжение капсулы хрусталика и он благодаря своим эластическим свойствам становится более выпуклым, создавая условия для рассматривания близких предметов. Расслабление ресничной мышцы ведет к уплощению хрусталика, создавая способность глаза видеть хорошо вдаль.
- Разделительная: В силу особенностей расположения хрусталика, он разделяет глаз на передний и задний отдел, выступая «анатомическим барьером» глаза, удерживая структуры от перемещения (не дает стекловидному телу перемещаться в переднюю камеру глаза).
- Защитная функция: наличие хрусталика затрудняет проникновение микроорганизмов из передней камеры глаза в стекловидное тело при воспалительных процессах.
Изменение хрусталика с возрастом:
- накапливается холестерин, уменьшается содержание витаминов С и группы В, снижается количество воды;
- ухудшается проницаемость сумки хрусталика для питательных веществ (нарушается питание);
- ослабляется регулирующая роль центральной нервной системы в поддержании количественных соотношений медиаторов — адреналина и ацетилхолина, обеспечивающих стабильный уровень проницаемости питательных веществ;
- меняется белковый состав хрусталика в сторону увеличения его нерастворимых фракций — альбуминоидов и уменьшения кристаллинов.
В результате нарушения обмена веществ в хрусталике к старости формируется плотное ядро и возникает его помутнение — катаракта. С потерей эластических свойств хрусталика понижается способность к аккомодации, развивается старческая дальнозоркость, или пресбиопия.
Хрусталик не имеет нервов и кровеносных сосудов, поэтому он не имеет чувствительности и в нем не развиваются воспалительные процессы. Обменные процессы осуществляются через внутриглазную жидкость, которой хрусталик окружен со всех сторон.
Источник: https://eyesfor.me/home/anatomy-of-the-eye/content-of-the-eyeball/lens/anatomy-of-lens
Анатомия глаза человека: строение и функции. Просто и доступно
Зрение — один из важнейших механизмов в восприятии человеком окружающего мира. С помощью визуальной оценки человек получает порядка 90 % информации, поступающей извне.
Безусловно, при недостаточном или полностью отсутствующем зрении организм приспосабливается, частично компенсируя утерю с помощью других органов чувств: слуха, обоняния и осязания.
Тем не менее ни одно из них не способно восполнить тот пробел, который возникает при недостатке зрительного анализа.
Как устроена сложнейшая оптическая система человеческого глаза? На чём основан механизм визуальной оценки и какие этапы он включает? Что происходит с глазом при потере зрения? Обзорная статья поможет разобраться в этих вопросах.
Анатомия глаза человека
Зрительный анализатор включает 3 ключевых компонента:
- периферический, представленный непосредственно глазным яблоком и прилегающими тканями;
- проводниковый, состоящий из волокон зрительного нерва;
- центральный, сосредоточенный в коре головного мозга, где происходит формирование и оценка зрительного образа.
Рассмотрим строение глазного яблока, чтобы понять, какой путь проходит увиденная картинка и от чего зависит её восприятие.
анатомия глаза
Строение глаза: анатомия зрительного механизма
От правильного строения глазного яблока напрямую зависит, какой будет увиденная картинка, какая информация поступит в клетки головного мозга и каким образом она будет обработана.
В норме этот орган выглядит в форме шара диаметром 24–25 мм (у взрослого человека). Внутри него находятся ткани и структуры, благодаря которым картинка проецируется и передается на участок мозга, способный обработать полученную информацию.
Структуры глаза включают несколько различных анатомических единиц, которые мы и рассмотрим.
Покровная оболочка — роговица
Роговица представляет собой особый покров, защищающий наружную часть глаза. В норме она абсолютно прозрачна и однородна, поскольку выполняет функцию считывания информации.
Через неё проходят световые лучи, благодаря которым человек может воспринимать трёхмерное изображение. Роговица бескровна, поскольку не содержит ни одного кровеносного сосуда.
Она состоит из 6 различных слоёв, каждый из которых несёт определённую функцию:
- Эпителиальный слой
- . Клетки эпителия находятся на наружной поверхности роговицы. Они регулируют количество влаги в глазу, которая поступает из слёзных желёз и насыщается кислородом за счёт слёзной плёнки. Микрочастицы — пыль, мусор и прочее — при попадании в глаз могут легко нарушить целостность роговицы. Впрочем, этот дефект, если он не затронул более глубокие слои, не представляет опасности для здоровья глаза, поскольку эпителиальные клетки быстро и относительно безболезненно восстанавливаются.
- Боуменова мембрана. Этот слой также относится к поверхностным, поскольку располагается сразу за эпителиальным. Он, в отличие от эпителия, не способен восстанавливаться, поэтому его травмы неизменно приводят к ухудшению зрения. Мембрана отвечает за питание роговицы и участвует в обменных процессах, протекающих в клетках.
- Строма. Этот довольно объёмный слой состоит из волокон коллагена, которые заполняют собой пространство.
- Десцеметова мембрана. Тоненькая мембранка на границе стромы отделяет её от эндотелиальной массы.
- Эндотелиальный слой. Эндотелий обеспечивает идеальную пропускную способность роговицы за счёт удаления лишней жидкости из роговичного слоя. Она плохо восстанавливается, поэтому с возрастом становится менее плотной и функциональной. В норме плотность эндотелия составляет от 3,5 до 1,5 тысяч клеток на 1 мм2 в зависимости от возраста. Если этот показатель падает ниже 800 клеток, у человека может развиться отёк роговицы, в результате которого резко снижается чёткость зрения. Такое поражение — естественный итог глубокой травмы или серьёзного воспалительного заболевания глаз.
- Слёзная плёнка. Последний роговичный слой отвечает за санацию, увлажнение и смягчение глаз. Слёзная жидкость, поступающая в роговицу, смывает микрочастички пыли, загрязнения и улучшает проницаемость кислорода.
Функции радужки в анатомии и физиологии глаза
За передней камерой глаза, заполненной жидкостью, располагается радужная оболочка.
Читайте также: Двухнедельные линзы - как выбрать лучшие, сколько носить
От её пигментации зависит цвет глаз человека: минимальное содержание пигмента обусловливает голубой цвет радужки, среднее значение характерно для зелёных глаз, а максимальный процент присущ кареглазым и черноглазым людям.
Именно поэтому большая часть деток рождается голубоглазыми — у них синтез пигмента ещё не отрегулирован, поэтому радужка чаще всего светлая. С возрастом эта характеристика меняется, и глазки становятся темнее.
Анатомическое строение радужки представлено мышечными волокнами. Они молниеносно сокращаются и расслабляются, регулируя проникающий световой поток и изменяя размер пропускного канальца.
В самом центе радужки располагается зрачок, который под действием мышц изменяет диаметр в зависимости от степени освещённости: чем больше световых лучей попадает на поверхность глаза, тем уже становится просвет зрачка. Этот механизм может нарушаться под действием медицинских препаратов или в результате болезни.
Краткосрочное изменение реакции зрачка на свет помогает диагностировать состояние глубоких слоёв глазного яблока, однако длительная дисфункция может привести к нарушению зрительного восприятия.
Хрусталик
За фокусировку и чёткость зрения отвечает хрусталик. Эта структура представлена двояковыпуклой линзой с прозрачными стенками, которая удерживается ресничным пояском. Благодаря выраженной эластичности хрусталик может практически моментально менять форму, регулируя чёткость зрения вдали и вблизи.
Чтобы увиденная картинка получалась корректной, хрусталик должен быть абсолютно прозрачным, однако с возрастом или в результате болезни линзы могут мутнеть, вызывая развитие катаракты и, как следствие, нечёткость зрения.
Возможности современной медицины позволяют заменить человеческий хрусталик имплантом с полным восстановлением функционала глазного яблока.
Стекловидное тело
Поддерживать шарообразную форму глазного яблока помогает стекловидное тело. Оно заполняет собой свободное пространство задней области и выполняет компенсаторную функцию.
Благодаря плотной структуре геля стекловидное тело регулирует перепады внутриглазного давления, нивелируя негативные последствия его скачков.
Кроме того, прозрачные стенки ретранслируют световые лучи непосредственно на сетчатку, благодаря чему складывается полная картинка увиденного.
Роль сетчатки в строении глаза
Сетчатка — одна из самых сложных и функциональных структур глазного яблока. Получая от поверхностных слоёв световые пучки, она преобразует эту энергию в электрическую и передаёт импульсы по нервным волокнам непосредственно в мозговой отдел зрения. Этот процесс обеспечивается благодаря слаженной работе фоторецепторов — палочек и колбочек:
- Колбочки — это рецепторы детального восприятия. Чтобы они могли воспринимать световые лучи, освещение должно быть достаточным. Благодаря этому глаз может различать оттенки и полутона, видеть мелкие детали и элементы.
- Палочки относятся к группе рецепторов повышенной чувствительности. Они помогают глазу видеть картинку в неудобных условиях: при недостаточном освещении или не в фокусе, то есть на периферии. Именно они поддерживают функцию бокового зрения, обеспечивая человеку панорамный обзор.
Склера
Тыльная оболочка глазного яблока, обращённая к глазнице, называется склерой. Она плотнее роговицы, поскольку отвечает за перемещение и поддержание формы глаза.
Склера непрозрачна — она не пропускает световые лучи, полностью ограждая орган с внутренней стороны. Здесь сосредоточена часть сосудов, питающих глаз, а также нервные окончания.
К наружной поверхности склеры прикреплены 6 глазодвигательных мышц, регулирующих положение глазного яблока в глазнице.
На поверхности склеры расположен сосудистый слой, обеспечивающий поступление крови к глазу.
Анатомия этого слоя несовершенна: здесь нет нервных окончаний, которые могли бы сигнализировать о появлении дисфункции и прочих отклонений.
Именно поэтому офтальмологи рекомендуют обследовать глазное дно не реже 1 раза в год — это позволит выявить патологию на ранних стадиях и избежать непоправимого нарушения зрения.
Физиология зрения
Чтобы обеспечить механизм зрительного восприятия, одного глазного яблока недостаточно: анатомия глаза включает ещё и проводники, которые передают полученную информацию в головной мозг для расшифровки и анализа. Эту функцию выполняют нервные волокна.
Световые лучи, отражаясь от предметов, попадают на поверхность глаза, проникают через зрачок, фокусируясь в хрусталике.
В зависимости от расстояния до обозримой картинки хрусталик с помощью цилиарного мышечного кольца меняет радиус кривизны: при оценке удалённых объектов он становится более плоским, а дли рассмотрения предметов вблизи — наоборот, выпуклым.
Этот процесс называется аккомодацией. Он обеспечивает изменение преломляющей силы и места фокуса, благодаря чему световые потоки интегрируются непосредственно на сетчатке.
В фоторецепторах сетчатки — палочках и колбочках — световая энергия трансформируется в электрическую, и в таком виде её поток передаётся нейронам зрительного нерва. По его волокнам возбуждающие импульсы перемещаются в зрительный отдел коры головного мозга, где информация считывается и анализируется. Такой механизм обеспечивает получение визуальных данных из окружающего мира.
Строение глаза человека с нарушением зрения
Согласно статистике, более половины взрослого населения сталкиваются с нарушением зрения. Наиболее распространёнными проблемами являются дальнозоркость, близорукость и сочетание этих патологий. Основной причиной этих заболеваний служат различные патологии в нормальной анатомии глаза.
При дальнозоркости человек плохо видит предметы, расположенные в непосредственной близости, однако может различить мельчайшие детали удалённой картинки. Дальняя острота зрения — бессменный спутник возрастных изменений, поскольку в большинстве случаев она начинает развиваться после 45-50 лет и постепенно усиливается. Причин этому может быть много:
- укорочение глазного яблока, при котором изображение проецируется не на сетчатке, а за ней;
- плоская роговица, не способная к регулировке преломляющей силы;
- смещение хрусталика в глазу, приводящее к неправильной фокусировке;
- уменьшение размеров хрусталика и, как следствие, некорректная передача световых потоков на сетчатку.
В отличие от дальнозоркости, при миопии человек детально различает картинку вблизи, однако дальние объекты видит расплывчато. Такая патология чаще имеет наследственные причины и развивается у детей школьного возраста, когда глаз испытывает нагрузки во время интенсивного обучения.
При таком нарушении зрения анатомия глаза также изменяется: размер яблока увеличивается, и изображение фокусируется перед сетчаткой, не попадая на её поверхность.
Ещё одной причиной близорукости может служить излишняя кривизна роговицы, из-за чего световые лучи преломляются слишком интенсивно.
Нередки ситуации, когда признаки дальнозоркости и близорукости сочетаются. В этом случае изменение строения глаза затрагивают и роговицу, и хрусталик. Низкая аккомодация не позволяет человеку в полной мере видеть картинку, что свидетельствует о развитии астигматизма.
Современная медицина позволяет исправить большинство проблем, связанных с нарушением зрения, однако куда проще и логичнее заранее побеспокоиться о состоянии глаз.
Бережное отношение к органу зрения, регулярная гимнастика для глаз и своевременное обследование у офтальмолога помогут избежать множества проблем, а значит, сохранить идеальное зрение на долгие годы.
Источник: https://www.oum.ru/literature/anatomiya-cheloveka/anatomiya-glaza-stroenie-i-funktsii/
Хрусталик. Анатомия, функции и методы исследования
Хрусталик является частью светопроводящей и светопреломляющей системы глаза. Это — прозрачная, двояковыпуклая биологическая линза, обеспечивающая динамичность оптики глаза благодаря механизму аккомодации.
В процессе эмбрионального развития хрусталик формируется на 3— 4-й неделе жизни зародыша из эктодермы. Хрусталик имеет форму двояковыпуклой линзы. Передняя и задняя сферичные поверхности хрусталика имеют разный радиус кривизны. Передняя поверхность более плоская.
Радиус ее кривизны (R =" 10 мм) больше, чем радиус кривизны задней поверхности (R = "6 мм). Центры передней и задней поверхностей хрусталика называют соответственно передним и задним полюсами, а соединяющую их линию — осью хрусталика, длина которой составляет 3,5—4,5 мм.
Линия перехода передней поверхности в заднюю — это экватор. Диаметр хрусталика 9-10 мм.
Хрусталик покрыт тонкой бесструктурной прозрачной капсулой. Эпителий передней капсулы играет важную роль в метаболизме хрусталика, характеризуется высокой активностью окислительных ферментов по сравнению с центральным отделом линзы. Эпителиальные клетки активно размножаются. У экватора они удлиняются, формируя зону роста хрусталика.
Вытягивающиеся клетки превращаются в хрусталиковые волокна.. Центрально расположенные волокна теряют ядра, обезвоживаются и сокращаются. Плотно наслаиваясь друг на друга, они формируют ядро хрусталика (nucleus lentis). Размер и плотность ядра с годами увеличиваются.
Это не отражается на степени прозрачности хрусталика, однако вследствие снижения общей эластичности постепенно уменьшается объем аккомодации.
Хрусталик имеет слоистую структуру — напоминает луковицу. В нем нет ни нервов, ни кровеносных и лимфатических сосудов.
Хрусталик со всех сторон окружен внутриглазной жидкостью. Питательные вещества поступают через капсулу путем диффузии и активного транспорта.
Хрусталик сохраняет свое положение в глазу при помощи волокон
круговой поддерживающей связки ресничного тела (цинновой связки). Тонкие (толщиной 20—22 мкм) паутинные нити отходят радиальными пучками от эпителия цилиарных отростков, частично перекрещиваются и вплетаются в капсулу хрусталика на передней и задней поверхностях, обеспечивая воздействие на капсулу хрусталика при работе мышечного аппарата ресничного (цилиарного) тела.
Функции хрусталика: Прежде всего он является средой, через которую световые лучи беспрепятственно проходят к сетчатке. Это -функция светопроведения. Она обеспечивается основным свойством хрусталика — его прозрачностью. Оптическая сила линзы 20,0 дптр.
Взаимодействуя с цилиарным телом, хрусталик обеспечивает функцию аккомодации. Он способен плавно изменять оптическую силу,эластично изменяться. Этим обеспечивается динамичность рефракции.
Хрусталик делит глазное яблоко на два неравнозначных отдела — меньший передний и больший задний. Это — перегородка или разделительный барьер между ними. Барьер защищает нежные структуры переднего отдела глаза от давления большой массы стекловидного тела.
В том случае, когда глаз лишается хрусталика, стекловидное тело перемещается кпереди. Затрудняются условия гидродинамики глаза за счет сужения (сдавления) угла передней камеры глаза и блокады области зрачка. Возникают условия к развитию вторичной глаукомы.
В этом причина возникновения тяжелой патологии сетчатки, такой как отек, отслойка, кровоизлияния, разрывы.
Хрусталик является преградой для проникновения микробов из передней камеры в полость стекловидного тела — защитный барьер. Прозрачность хрусталика и наличие помутнения (катаракты) можно оценить при исследовании в проходящем свете.
При этом локальные помутнения хрусталика будут выглядеть как черные объекты на фоне розового рефлекса с глазного дна.
При диффузном помутнении всего хрусталика рефлекс с глазного дна будет ослаблен, при дальнейшем созревании катаракты становится невозможной офтальмоскопия.
При биомикроскопии вещество хрусталика в норме прозрачное, а при наличии помутнений они выглядят как белесоватые объекты или как диффузное помутнение глубоких слоев хрусталика. Помутнения хрусталика могут иметь самую разнообразную форму и некоторые особенности при различных видах катаракт (диабетической, лучевой и т.д.).
Отсутствие хрусталика называют афакией, а наличие в глазу искусственного хрусталика артифакией.
Не нашли то, что искали? Воспользуйтесь поиском:
Читайте также: Тобрамицин - аналоги и заменители последнего поколения
Источник: https://studopedia.ru/7_89750_hrustalik-anatomiya-funktsii-i-metodi-issledovaniya
Строение хрусталика
непрерывный ток жидкости из задней камеры в переднюю, а затем через угол передней камеры за пределы глаза, является разность давлений в полости глаза и венозном синусе склеры (около 10 мм рт.ст.), а также в указанном синусе и передних ресничных венах.
7.1 Хрусталик
Хрусталик является частью светопроводящей и светопреломляющей системы глаза. Это — прозрачная, двояковыпуклая биологическая линза, обеспечивающая динамичность оптики глаза благодаря механизму аккомодации.
Располагаясь во фронтальной плоскости, хрусталик несколько смещен (децентрован) медиально и вниз относительно оптической оси глаза. Возникающая в связи с этой топографической особенностью незначительная аберрация нивелируется размерами и положением зрачка.
Спереди центральная часть передней поверхности хрусталика прикрывает зрачок и прилежит к зрачковому краю радужки, несколько выпячивая ее в переднюю камеру глазного яблока. Остальная часть передней поверхности хрусталика свободно омывается водянистой влагой задней камеры глазного яблока.
Задняя поверхность хрусталика прилежит к передней поверхности стекловидного тела, на которой имеется соответствующее углубление — стекловидная ямка. Между задней поверхностью хрусталика и стекловидным телом имеется узкая щель — захрусталиковое пространство.
Практический интерес представляют пространственные количественные взаимоотношения хрусталика с окружающими частями глаза, которые могут быть представлены в следующем виде (AnsonB.J.,1966):
- 1)от передней плоскости хрусталика до передней плоскости закрытого
- века8мм
- 2)от передней плоскости хрусталика до переднего полюса роговицы – 3-
- 4мм
3) от экватора хрусталика до передней поверхности роговицы3мм
4)от центра хрусталика до надглазничного края -18мм 5)от центра хрусталика до подглазничного края18мм
В процессе эмбрионального развития хрусталик формируется на 3— 4-й неделе жизни зародыша из эктодермы, покрывающей стенку глазного бокала. Эктодерма втягивается в полость глазного бокала, и из нее формируется зачаток хрусталика в виде пузырька. Из удлиняющихся эпителиальных клеток внутри пузырька образуются хрусталиковые волокна.
Хрусталик имеет форму двояковыпуклой линзы. Передняя и задняя сферичные поверхности хрусталика имеют разный радиус кривизны (рис. 7.1.1). Передняя поверхность более плоская.
Радиус ее кривизны (R =" 10 мм) больше, чем радиус кривизны задней поверхности (R = "6 мм).
Центры передней и задней поверхностей хрусталика называют соответственно передним и задним полюсами, а соединяющую их линию — осью хрусталика, длина которой составляет 3,5—4,5 мм.
Линия перехода передней поверхности в заднюю — это экватор. Диаметр хрусталика 9—10 мм.
Хрусталик покрыт тонкой бесструктурной прозрачной капсулой. Часть капсулы, выстилающая переднюю поверхность хрусталика, имеет название «передняя капсула» («передняя сумка”) хрусталика. Ее толщина 11—18 мкм.
Изнутри передняя капсула покрыта однослойным эпителием, а задняя его не имеет, она почти в 2 раза тоньше передней.
Эпителий передней капсулы играет важную роль в метаболизме хрусталика, характеризуется высокой активностью окислительных ферментов по сравнению с центральным отделом линзы. Эпителиальные клетки активно размножаются.
Рис 7.1.1. Хрусталик. Вид со стороны экватора
Рис 7.1.2. Хрусталик. Вид косо спереди.
58
Рис. 7.1.3. Строение хрусталика и расположение поддерживающей его
цинновой связки.
У экватора они удлиняются, формируя зону роста хрусталика. Вытягивающиеся клетки превращаются в хрусталиковые волокна. Молодые лентовидные клетки оттесняют старые волокна к центру. Этот процесс непрерывно протекает на протяжении всей жизни.
Центрально расположенные волокна теряют ядра, обезвоживаются и сокращаются. Плотно наслаиваясь друг на друга, они формируют ядро хрусталика (nucleusLentis). Размер и плотность ядра с годами увеличиваются.
Это не отражается на степени прозрачности хрусталика, однако вследствие снижения общей эластичности постепенно уменьшается объем аккомодации (см. раздел «Аккомодация»). К 40—45 годам жизни уже имеется достаточно плотное ядро. Такой механизм роста хрусталика обеспечивает стабильность его наружных размеров.
Замкнутая капсула хрусталика не позволяет погибшимклеткам слущиваться наружу. Как и все эпителиальные образования, хрусталик в течение всей жизни растет, но размер его не увеличивается.
59
Молодые волокна, постоянно образующиеся на периферии хрусталика, формируют вокруг ядра эластичное вещество — кору хрусталика (cortexIentis). Волокна коры окружены специфическим веществом, имеющим одинаковый с ними коэффициент преломления света. Оно обеспечивает их подвижность при сокращении и расслаблении, когда хрусталик меняет форму и оптическую силу в процессе аккомодации.
Хрусталик имеет слоистую структуру — напоминает луковицу. Все волокна, отходящие в одной плоскости от зоны роста по окружности экватора, сходятся в центре и образуют трехконечную звезду, которая видна при биомикроскопии, особенно при появлении помутнений.
Из описания строения хрусталика видно, что он является эпителиальным образованием: в нем нет ни нервов, ни кровеносных и лимфатических сосудов.
Артерия стекловидного тела (a. hyaloidea), которая в раннем эмбриональном периоде участвует в формировании хрусталика, впоследствии редуцируется. К 7—8-му месяцу рассасывается капсула сосудистого сплетения вокруг хрусталика.
Хрусталик со всех сторон окружен внутриглазной жидкостью. Питательные вещества поступают через капсулу путем диффузии и активного транспорта. Энергетические потребности бессосудистого эпителиального образования в 10—20 раз ниже, чем потребности других органов и тканей. Они удовлетворяются посредством анаэробного гликолиза.
По сравнению с другими структурами глаза хрусталик содержит наибольшее количество белков (35— 40 %). Это — растворимые а- и р- кристаллины и нерастворимый альбуминоид. Белки хрусталика органоспецифичные. При иммунизации к этому белку может возникнуть анафилактическая реакция.
В хрусталике есть углеводы и их производные, восстановители глютатиона, цистеина, аскорбиновой кислоты и др. В отличие от других тканей в хрусталике мало воды (до 60—65 %), причем с возрастом ее количество уменьшается.
Содержание белка, воды, витаминов и электролитов в хрусталике значительно отличается от тех пропорций, которые выявляются во
внутриглазной жидкости, стекловидном теле и плазме крови.
Хрусталик плавает в воде, но, несмотря на это, является дегидрированным образованием, что объясняется особенностями водноэлектролитного транспорта.
В линзе высокий уровень ионов калия и низкий уровень ионов натрия: концентрация ионов калия в 25 раз выше, чем в водянистой влаге глаза и стекловидном теле, а концентрация аминокислот в 20 раз выше.
Капсула хрусталика обладает свойством избирательной проницаемости, поэтому химический состав прозрачного хрусталика поддерживается на определенном уровне. Изменение состава внутриглазной жидкости отражается на состоянии прозрачности хрусталика.
Увзрослого человека хрусталик имеет легкий желтоватый оттенок, интенсивность которого с возрастом может усиливаться. Это не отражается на остроте зрения, однако может повлиять на восприятие синего и фиолетового цвета.
Хрусталик располагается в полости глаза во фронтальной плоскости между радужкой и стекловидным телом, разделяя глазное яблоко напередний и задний отделы. Спереди хрусталик служит опорой для зрачковой части радужки. Его задняя поверхность располагается в углублении стекловидного тела, от которого хрусталик отделяет узкая капиллярная щель, расширяющаяся при скоплении в ней экссудата.
Хрусталик сохраняет свое положение в глазу при помощи волокон круговой поддерживающей связки ресничного тела (цинновой связки).
Тонкие (толщиной 20— 22 мкм) паутинные нити отходят радиальными пучками от эпителия цилиарных отростков, частично перекрещиваются и вплетаются в капсулу хрусталика на передней и задней поверхностях, обеспечивая воздействие на капсулу хрусталика при работе мышечного аппарата ресничного (цилиарного) тела.
Увзрослых хрусталик, сохраняя прозрачность, приобретает желтоватый оттенок, интенсивность которого с возрастом увеличивается. В результате этого у пожилых людей может быть ослаблено восприятие синего и
фиолетового цвета, наблюдается ксантопсия — видение предметов в желтом цвете. После удаления такого хрусталика возникает временнаяцианопсия — восприятие предметов в синем цвете.
Таблица 6
Масса и объем хрусталика в зависимости от возраста
(по данным Scammon R., HesdorfTerМ.,1937)
Возраст | Средняя масса, мг | Средний объем, мл |
Новорожденные | 65,6± 1,9 | |
1-3 месяца | 92,8±1,2 | |
4-5 месяцев | 109,0+6,1 | |
10 — 20 лет | 152,8±2,1 | |
20 — 30 лет | 172,0±2,0 | 162,9± 1,8 |
30 — 40 лет | 190,3±1,5 | 177,3± 1,7 |
40 — 50 лет | 202,4± 1,9 | 188,1 ±2,1 |
50 — 60 лет | 222,3±2,6 | 205,4±2,7 |
60 — 70 лет | 230,1±3,1 | 213,0±3,0 |
70 — 80 лет | 237,1+3,4 | 218,3+2,9 |
80 — 90 лет | 258,1 ±2,8 | 238,7+8,0 |
Свозраста 40-45 лет ядро хрусталика становится плотным, утрачивает эластичность. С этого времени происходит ослабление аккомодации и развивается пресбиопия.
К 60 годам способность к аккомодации нередко утрачивается полностью, что связано с выраженным склерозом ядра хрусталика.
Свозрастом, особенно у лиц старше 60 лет, отмечается утолщение передней капсулы до 17 мкм в центральной зоне и более существенно в зоне парацентрального кольца — до 25 мкм. Экваториальная зона не претерпевает существенных изменений по толщине с возрастом.
Изменения передней капсулы катарактального хрусталика четко коррелируются с локализацией деструктивного процесса. При локализации
катарактальных изменений в ядре и сохранности кортикального слоя передняя капсула не претерпевает заметных морфологических изменений. Сохраняется характерная для прозрачного хрусталика зональность топографии передней капсулы.
Наблюдается более выраженное утолщение центральной зоны — до 19 мкм и парацентрального кольца — до 29 мкм по сравнению с капсулой прозрачного хрусталика после 60 лет.
В отличие от прозрачного хрусталика с возрастом отмечается сужение медиальной части парацентрального кольца до 1,9 мм и расширение латеральной части до 2,7 мм. Четко выявляется истончение экваториальной зоны до 9-11 мкм. Центральная зона имела диаметр 3,0 мм.
Вершина максимального утолщения проецируется по окружности диаметром 5,0 мкм, а внутренний диаметр зоны крепления волокон цинновой связки составляет 7,3 мм.
Морфологические изменения передней капсулы, как правило, выявляются в катарактальных хрусталиках с локализацией деструктивных изменений в субкапсулярном эпителии и прилежащему к нему кортикальному слою. В этих хрусталиках эпителиальные клетки неплотно прилегают друг к другу.
Эпителиальные клетки неоднородно окрашены, появляется вакуолизация цитоплазмы, ядра теряют округлость формы, пикнотически перерождаются. Плотность субкапсулярного эпителия снижается до 5 клеток на 100 мкм (7-9 клеток в прозрачных хрусталиках). При очаговой пролиферации субкапсулярного эпителия отмечается резкое утолщение передней капсулы с неоднородным окрашиванием ее.
Хрусталиковые волокна теряют направленность, разрыхляются, набухают и сливаются в однородную, неравномерно окрашенную массу.
Деструктивным изменениям субкапсулярного эпителия и кортикального слоя сопутствуют изменения передней капсулы. Отмечается неравномерность толщины с очаговым резким истончением и нечеткостью внутренней границы.
Передняя капсула легко отслаивается от подлежащих структур, расслаивается, имеет складчатость.
Источник: https://studfile.net/preview/6059251/page:3/